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ABSTRACT

Topic Detection and Tracking (TDT) is a DARPA-sponsored initia- The TDT study is intended to explore techniques for detect-
tive to investigate the state of the art in finding and following neWing the appearance of new topics and for tracking the reap-
events in a stream of broadcast news stories. The TDT problem coﬁ)’earance and evolution of them. During the first portion of

sists of three major tasks: (1) segmenting a stream of data, especially. . s o i
recognized speech, into distinct stories; (2) identifying those new%MIS study, the notion of a tqplc was m9d|f|ed 'and sharp
ned to be an “event”, meaning some unique thing that hap-

stories that are the first to discuss a new event occurring in the new§'

and (3) given a small number of sample news stories about an everP€NS at some point in time.  The notion Qf an event differs
finding all following stories in the stream. from a broader category of events both in spatial/temporal

, localization and in specificity. For example, the eruption of
The TDT Pilot Study ran from September 1996 through Octobeny, .\t pinatubo on June 15th, 1991 is consider to be an event,

1997. The primary participants were DARPA, Carnegie Mellon . L . .
University, Dragon Systems, and the University of Massachusett\sNhereas volcanic eruption in general is considered to be a

at Amherst. This report summarizes the findings of the pilot study. qlass ofevents. Events might be unexpected', ,SUCh as the erup-
tion of a volcano, or expected, such as a political election.

The TDT work continues in a new project involving larger training ) ) .

and test corpora, more active participants, and a more broadly dd-he TDT study assumes multiple sources of information, for

fined notion of “topic” than was used in the pilot study. example various newswires and various news broadcast pro-

grams. The information flowing from each source is assumed
to be divided into a sequence of stories, which may provide
information on one or more events. The general task is to
identify the events being discussed in these stories, in terms
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1. Overview

of the stories that discuss them. Stories that discuss unex-
pected events will of course follow the event, whereas stories
on expected events can both precede and follow the event.

The remainder of this section outlines the three major tasks of
the study, discusses the evaluation testbed, and describes the
evaluation measures that were used. Section presents the ap-
proaches used by the study members to address the problem
of text segmentation and discusses the results. The detection
task is taken up and similarly described in Section . Sec-
tion presents the approaches and results of the tracking task,
including a brief section on tracking using a corpus created
from speech recognition output.

1.2. The Corpus

The purpose of the Topic Detection and Tracking (TDT) Pi-

lot Study is to advance and accurately measure the state éf corpus of text and transcribed speech has been developed
the art in TDT and to assess the technical challenges to lte support the TDT study effort. This study corpus spans the
overcome. At the beginning of this study, the general TDTperiod from July 1, 1994 to June 30, 1995 and includes nearly
task domain was explored and key technical challenges werk5,000 stories, with about half taken from Reuters newswire
clarified. This document defines these tasks, the performan@nd half from CNN broadcast news transcripts. The tran-
measures to be used to assess technical capabilities and seripts were produced by the Journal of Graphics Institute
search progress, and presents the results of a cooperative {[3Gl). The stories in this corpus are arranged in chronolog-
vestigation of the state of the art. ical order, are structured in SGML format, and are available



from the Linguistic Data Consortium (LDQC). with stories, and therefore the task is to group the stories in
DLPe study corpus into clusters, where each cluster represents

A set of 25 target events has been defined to supportthe T an event and where the stories in the cluster discuss the event.

and include both expected and unexpected events. They
described in some detail in documents provided as part o
the TDT Corpus. The TDT corpus was completely anno-On-line New Event Detection The on-line new eventdetec-
tated with respect to these events, so that each story in th#on task is defined to be the task of identifying new events in
corpus is appropriately flagged for each of the target eventa stream of stories. Each story is processed in sequence, and
discussed in it. There are three flag values possible: YE& decision is made whether or not a new event is discussed
(the story discusses the event), NO (the story doesn'’t disn the story, after processing the story but before processing
cuss the event), and BRIEF (the story mentions the everdny subsequent stories). A decision is made after each story
only briefly, or merely references the event without discus-is processed. The first story to discuss an event should be
sion; less than 10% of the story is about the event in quedlagged YES. If the story doesn’t discuss any new events, then
tion). Flag values for all events are available in the fileit should be flagged NO.
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erefore each story may be included in at most one cléster.

The Tracking Task The tracking task is defined to be the

1.3. The Tasks task of associating incoming stories with events known to the
system. An eventis defined (“known”) by its association with

The Topic Detection and Tracking Study is concerned withstories that discuss the event. Thus each target event is de-

the detection and tracking of events. The input to this profined by a list of stories that discuss it.

cess is a stream of stories. This stream may or may not be

pre-segmented into stories, and the events may or may n

be known to the system (i.e., the system may or may not b ; X

trained to recognize specific events). This leads to the definf€ target event. To support this task the study corpus will be

tion of three technical tasks to be addressed in the TDT studg.'v'ded into two parts, with the first part being the training

These are namely the tracking of known events, the detectiont! and the second part being the test set. (Th!s d'V'S.'O.n IS
of unknown events, and the segmentation of a news sour fferent for each event, in order to have appropriate training
into stories and test sets.) Each of the stories in the training set will be

flagged as to whether it discusses the target event, and these
The Segmentation Task The segmentation task is defined flags (and the associated text of the stories) will be the only
to be the task of segmenting a continuous stream of text (ininformation used for training the system to correctly classify
cluding transcribed speech) into its constituent stories. Tahe target event. The tracking task is to correctly classify all
support this task the story texts from the study corpus will beof the stories in the test set as to whether or not they discuss
concatenated and used as input to a segmenter. This concatiee target event.

nated text stream will include only the actual story texts and K is th ber of i dtod
will exclude external and internal tag information. The seg-A p”rj‘ar,y Eas parameter is the number of stories used to de-
&ne (“train”) the target evently;. The division of the corpus

mentation task is to correctly locate the boundaries betwee - | .

adjacent stories, for all stories in the corpus. etween training and.t.est will be a .fu'nctlon of the evgnt and
the value ofN, . Specifically, the training set for a particular

The Detection Task The detection task is characterized by event and a particular value f, will be all of the stories up

the lack of knowledge of the event to be detected. In sucho and including theV}" story that discusses that event. The

a case, one may wish to retrospectively process a corpus @st set will be all subsequent stories.

stories to identify the events discussed therein, or one may ]

wish to identify new events as they occur, based on an on-lind.4. The Evaluation

stream of stories. Both of these alternatives are support

under the detection task.

the tracking task a target event is given, and each succes-
Ive story must be classified as to whether or not it discusses

eFo assess TDT application potential, and to calibrate and
guide TDT technology development, TDT task performance
Retrospective Event Detection The retrospective detection Will be evaluated formally according to a set of rules for each

task is defined to be the task of Identlfymg all of the events 3While it is reasonable that a story will typically discuss a single event,

in a corpus of stories. Events are defined by their associatiofs is not always the case. In addition to multifaceted stories, there are also
overlapping events. For example, in the case of the TDT study’s corpus and

ILinguistic Data Consortium Telephone: 215 898-0464 3615 Markettarget events, there are 10 stories that have a YES or BRIEF tag for more than
Street Fax: 215 573-2175 Suite 200 Idc@Idc.upenn.edu Philadelphia, PAine event. One of these (story 8481) has a YES tag for two events (namely
19104-2608, USAhttp://www.ldc.upenn.edu Carter in Bosnia and Serbs violate Bihac). Nonetheless, the assumption that

20nly values of YES and BRIEF are listed, thus reducing the size of theeach story discusses only one event will be used, because it is reasonable for
judgment file by two orders of magnitude. (The vast majority of stories havethe large majority of stories and because it vastly simplifies the task and the
flag values of NO for all events.) evaluation.




of the three TDT tasks. In these evaluations, there will baty to correctly locate the boundaries between stories. Sec-
numerous conditions and questions to be explored. Amongnd, segmentation will be evaluated indirectly in terms of its
these are: ability to support event tracking and preserve event tracking
performance.
e How does performance vary when processing differen

sources and types of sources? }:or the segmentation task, all of the TDT study corpus will

be reserved for evaluation purposes. This means that any ma-

e How does selection of training source and type affectterial to be used for training the segmentation system must
performance? come from sources other than the TDT study corpus. Also,

the nature of the segmentation task is that the segmentation is

In general evaluation will be in terms of classical detectionperformed on a single homogeneous data source. Therefore,
theory, in which performance is characterized in terms of twdor the purpose of evaluating the segmentation task, segmen-
different kinds of errors, namely misses (in which the targetation will be performed not only on the TDT Corpus as a
event is not detected) and false alarms (in which the targevhole, but also on its two separate sub-streams-one compris-
event is falsely detected). In this framework, different eventdng just the Reuters stories, and the other comprising just the
will be treated independently of each other and a system wilENN stories. In addition, the segmentation task must be per-

have separate outputs for each of the target events. formed without explicit knowledge of the source of the text,
whether from newswire or transcribed speech.

2. Segmentation Direct Evaluation of Segmentation Segmentation will be
The segmentation task addresses the problem of automagvaluated directly using a modification of a method suggested
ically dividing a text stream into topically homogeneous by John Lafferty*
blocks. The motivation for this capability in this study arises__ = . i , . . .
from the desire to apply event tracking and detection techd NS iS an ingenious method that avoids dealing with bound-
nology to automatically generated transcriptions of broadcad€s explicitly. Instead, it measures the probability that two
news, the quality of which have improved considerably insentences drawn at random from the corpus are correctly clas-

recent years. Unlike newswire, typical automatically tran-Sified as to whether they belong to the same story. For the

scribed audio data contains little information about how the! DT Study, the calculation will be performed on words rather

stream should be broken, so segmentation must be done pan sentences Also, the error probability will be split into

fore further processing is possible. Segmentation is therdWO Parts, namely the probability of misclassification due to
missed boundary (a “miss”), and the probability of misclas-

fore an “enabling” technology for other applications, such a M!SS . >
tracking and new event detection. sification due to an extraneous boundary (a “false alarm”).

These error probabilities are defined as
Given the nature of the medium, “topically homogeneous

blocks” of broadcast speech should correspond to stories, — p = _ Somy Onyp(iyi+ k) - (1= byep(iyis k)

hence a segmenter which is designed for this task will find Eﬁ\;’“(l — Orey(i,i + k))

story boundaries. The approaches described below, however, N—k . ..

are quite general; there is no reason that the same techn@®s ;e Ararm = iz (- %Lf‘z(l’l +.k.)) Ores (i k)

ogy, suitably tuned, cannot be applied to other segmentation izt Orer(i,i+ k)

problems, such as finding topic breaks in non-news broadcast

formats or long text documents. where the summations are over all the words in the corpus
and where

There is a relatively small but varied body of previous work
that has addressed the problem of text segmentation. Thig; j) = {
work includes methods based on semantic word networks

[10], vector space techniques from information retrieval [7], Choice ofk is a critical consideration in order to produce a
and decision tree induction algorithms [11]. The research ofneaningful and sensitive evaluation. For the TDT study cor-
segmentation carried out under the TDT study has led to thguys, « will be chosen to be half the average document length,

development of several new and complementary approach@swords, of the text stream on which we evaluate (about 250
that do not directly use the methods of this previous workifor the TDT Corpus, for example).

although all of the approaches share a common rationale ane-
motivation.

1 when words andj are from the same story
0 otherwise

“Text Segmentation Using Exponential Models”, by Doug Beeferman,
Adam Berger, and John Lafferty.
. 5There are several reasons for using words rather than stories. First, there
2.1. Evaluation will likely be less debate and fewer problems in deciding how to delimit
. . . . . words than how to delimit sentences. Second, the word seems like a more
Segmentation will be evaluated in two different ways. First,syitapie unit of measurement, because of the relatively high variability of the

segmentation will be evaluated directly in terms of its abil-length of sentences.



Indirect Evaluation of Segmentation Segmentation will Implementation Details Since the entire TDT Corpus is set
be evaluated indirectly by measuring event tracking perforaside for evaluation, training data for a segmenter must come
mance on stories as they are defined by automatic segmefrom other sources. One such source available to all sites
tation means. A segment will contribute to detection errords the portion of Journal Graphics data from the period Jan-
proportionate to how it overlaps with stories that would con-uary 1992 through June 1994. This data was restricted to the
tribute to the error rates. Details of this evaluation are preCNN shows included in the TDT Corpus, and stories of fewer

sented in Section in the tracking chapter. than 100 and more than 2,000 words were removed. This left
15,873 stories of average length 530 words. A global unigram
2.2. Dragon Approach model consisting of 60,000 words was built from this data.

Theory Dragon’s approach to segmentation is to treat arhe topics used by the segmenter, which are referred to as
story as an instance of some underlying topic, and to modebackgroundtopics, were constructed by automatically clus-
an unbroken text stream as an unlabeled sequence of thegging news stories from this training set. The clustering was
topics. In this model, finding story boundaries is equivalentdone using a multi-pags-means algorithm that operates as
to finding topic transitions. follows:

At a certain level of abstraction, identifying topics in a text
stream is similar to recognizing speech in an acoustic stream.1. At any given point there ark clusters. For each story,
Each topic block in a text stream is analogous to a phoneme  determine its distance to the closest cluster (based on the
in speech recognition, and each word or sentence (depend- measure described below), and if this distance is below a
ing on the granularity of the segmentation) is analogous to  threshold, insert the story into the cluster and update the
an “acoustic frame”. ldentifying the sequence of topics in statistics. If this distance is above the threshold, create a
an unbroken transcript therefore corresponds to recognizing  new cluster.

phonemes in a continuous speech stream. Just as in speech
recognition, this situation is subject to analysis using classic <
Hidden Markov Model (HMM) techniques, in which the hid-

den states are topics and the observations are words or sen-
tences.

Loop through the stories again, but now consider switch-
ing each story from its present topic to the others, based
on the same measure as before. Some clusters may van-
ish; additional clusters may need to be created. Repeat
this step as often as desired.

More concretely, suppose that there aropics7("), 72,

(k) i i i ) . . _—
- T (i) Therg Is a language model associated with eachq igtance measure used in the clustering was a variation
topicT", 1 < ¢ < k, in which one can calculate the prob- of the symmetric Kullback-Leibler (KL) metric:

ability of any sequence of words. In addition, there are tran-

sition probabilities among the topics, including a probability 5n/S

for each topic to transition to itself (the “self-loop” probabil- d = Z(Sn/s) log (en + 52)/(C + 9)
ity), which implicitly specifies an expected duration for that "

topic. Given a text stream, a probability can be attached to + Z(cn/C) log cn/C

any particular hypothesis about the sequence and segmenta- ~ (cn +50)/(C+S)’

tion of topics in the following way:
wheres,, andc,, are the story and cluster counts for ward,

N _ _ with S = 3" s, andC =3 ¢y,
1. Transition from the start state to the first topic, accumu- ) )
lating a transition probability. A background topic language model was built from each clus-

ter. To simplify this task, the number of clusters was limited
2. Stay in topic for a certain number of words or sen-to 100 and each topic was modeled with unigram statistics
tences, and, given the current topic, accumulate a selfonly. These unigram models were just smoothed versions of
loop probability and a language model probability for the raw unigram models generated from the clusters. Smooth-
each. ing each model consisted of performing absolute discounting
followed by backoff to the global unigram model. The uni-
3. Transition to a new topic, accumulating the transitiongram models were filtered against a stop list to remove 174
probability. Go back to step 2. common words.

Decoding of text was done by actually using code from a
A search for the best hypothesis and corresponding se@peech recognizer with 100 underlying “single node” models
mentation can be done using standard HMM techniques an@orresponding to the topics), each of which was represented
standard speech recognition tricks (using thresholding if thdy a unigram model as described above. As in speech, the
search space gets too large, for example). text was scored against these models frameat a time —



a frame corresponding, in these experiments, to a sentengaromising results. This work represents just the beginning
The topic-topic transition penalties were folded into a singleof what can be achieved with this approach; many improve-
number, the topic-switch penalty, which was imposed whenments are possible, both by incorporating ideas found in im-
ever the topic changed between frames/sentences. plementations at the other sites and from generalizations of

The topic-switch penalty was tuned to produce the correcTthe techniques already employed.

average number of words per segment on the first 100 storida particular, some form of story modeling that attempts to
from the test set. There are no other parameters to tune excagicognize features around boundaries, which both UMass and
the search beam width, which was set large enough to avoi@MU incorporate into their systems, should be incorporated
search errors in the experiments. into Dragon’s framework. One way to do this, which contin-
ues in the spirit of the speech recognition analogy, is to use
“multi-node” story models, in which a story is modeled as a
TDT Corpus. The segmentation error metric computed for sequence of nodes (for example, one which models the story
Dragon’s system on the full TDT Corpus was 12.9%. Thestart, one which models the middle, and one which models
segmenter produced 16,139 story boundaries, compared tbe end) rather than a single topic model.

the 15,863 actual boundaries in the test set. Of these, 10,6
were exact matches, yielding a recall rate of 67.0% and a pr
cision of 65.8%.

Results

%?is also possible to improve the topic modeling that already
Yorms the basis of the segmenter. Some methods of achieving
this include using bigram models in place of unigram models
CNN vs. Reuters. One might expect that, because the datafor topics, including a “trigger model” of the kind employed
used to train the segmenter’s background models was takddy CMU, and adaptively training the background during seg-
entirely from CNN broadcasts, the performance of the segmentation. Itis also likely that the basic speech-inspired lan-
menter on the CNN portion of the TDT Corpus would be sig-guage models can be improved by incorporating information
nificantly better than its performance on the Reuters portionretrieval measures that are more informed about topic infor-
To explore this, Dragon ran the evaluation separately on thenation, such as the local context analysis used by UMass.
two subcorpora. The system returned a segmentation error of

16.8% (worse than for the corpus as a whole!) on CNN, an®.3. UMass Approach

an error of 12.3% (better!) on Reuters. i
Content Based LCA Segmentation UMass has developed

The most likely explanation for this anomaly is that the CNNtwo largely complementary segmentation methods. The first
is more difficult than Reuters for a content-based segmentghethod makes use of the technique of local context analy-
such as Dragon’s. For example, written news tends to bejs (LCA) [16]. LCA was developed as a method for auto-
more concise than broadcast news, with none of the typimatic expansion of ad hoc queries for information retrieval.
cal “broadcast fillers”, such as introductions, greetings, andgt is somewhat like the method of local feedback [5] but has
sign-offs. It is also the case that the length of CNN storiesheen shown to be more effective and more robust. For the
varies much more widely than Reuters stories, a problem fosegmentation task, LCA can be thought of as an association
this segmenter, which has a single parameter controlling fofhesaurus which will return words and phrases which are se-
length. mantically related to the query text and are determined based
on collection-wide co-occurrence as well as similarity to the
contains punctuation marks, making it possible to introduc®"dinal sentence. Each sentence is run as a query against the
b_CA database and the top 100 concepts are returned. The

sentence breaks in the usual way. The recognized transcrip=7"" . .
tions, of course, contain no punctuation, so breaks were inoriginal sentence is then replaced with the LCA concepts and

troduced at arbitrary points in the segments in such a way @e effect Is éh?t sentences .‘n’h'ch olrllg;]nally had fiVCV:r per-
to produce approximately the same number of “sentences” g&2PS N0 words in common will typically have many LCA con-
in the closed-caption case. cepts in common.

TWA Corpus. The closed-caption version of the corpus

Tm_e original LCA method was derived from that described in

On the closed-caption data, the segmenter returned a segmi12 ™ i< indexed at th level usi ff
tation error of 25.5%. On the recognized data the error wa: ]. The text IS Indexe atthe sentence level using offsets to
code the positions of the LCA features. For example, sup-

33.6%. The size of these numbers suggests that the proble‘?ﬁ1 he f 0. 3. Si Y : 1 3 and
of segmenting broadcasts may be harder than the TDT CoPose the feature 0. J. Simpson” occurs in sentence 1, 3, an

pus leads us to believe. In any event, it would be interestin 0. The index will ?”COde these positions as 1, 2 and 7, the
ffset from the previous occurrence of the concept. The main

to calibrate these error rates against the result on a clean tra] s of the LOA ) h p

scription of the TWA Corpus. idea of the segmenter is to use these offsets to measure
shifts in vocabulary over time. The original method, which

The Future It is remarkable that this simple application of was tested on the Wall Street Journal, used a simple func-

HMM techniques to segmentation and tracking achieves suction of the offsets as a heuristic measure of the “surprise”



of seeing a particular concept in a particular sentence. Imot help more is that, in the first place, the distributions of the
a homogeneous collection such as the Wall Street Journdkatures are far from normal and, secondly, most of the data
this heuristic, in conjunction with LCA expansion, worked points cluster around the mean. This suggests that an adaptive
quite well. However, the TDT Corpus has stories from sev-binning technique would work better than using standardized
eral sources and so it often happens that several stories agores.

the same topic will occur in close proximity. Moreover, sinceIn order to shed some liaht on this coniecture. all of the
the TDT Corpus consists of transcribed speech, there is fa 9 J ’

more off-topic language than in the Wall Street Journal. Ford’ata points lying more than one standard deviation from the

example, throughout the corpus, one finds social interactior\}nv1 :2”;’;?;6 Sssga;gﬁiﬁgiso?gg:gsetzr:‘da;%isztggda;ﬂige;ﬁn“ﬁ?
between speakers which does not relate to the current topi{;. P :

These two difficulties were circumvented by means of an ex—edly poor modification yielded a modest improvement over

ponential length model. Rather than looking at the total sizqg]e initial standard scores and therefore suggests that adap-

of the offset, a model of the average segment size was use Ve binning would be appropriat'e. However, it is not knoyvn
The model was used to determine the probability that an oco what extent the results would improve from better binning.
currence of a concept was in the same segment as the pre@ne advantage of the HMM implementation is that it is very
ous occurrence. This method is more robust with respect téast. Training time is approximately 15 minutes on the TDT
multiple stories on same topic and to “social noise” than theraining corpus and segmentation is extremely fast as one
original method and performance is improved. would expect from an HMM with a small number of states.
The LCA method can be thought of as a content-basedMSE’ unllkdeltheILCiAhmetk;]oill, the HMN.I m?thOd can be useI(d
method. It works by looking at changes in content-bearing:t the wor evel(atl Olﬁ’} td.e cgrrent 'mp ?T}enéa'\;'&n Worh Sd
words. It is somewhat similar to the topic models used in. tthe ;enten_ce evel). The |sa_\{antageo the metho
Dragon’s method and to the relevance features in cMud® that it requires segmented training data.
method. The strong point of the LCA method is that, otherResults and Discussion

than the length model estimation, it is completely unsuper- hod h hi 0
vised. One weakness of this method is that the current im-A Method.  The LCA segmenter achieves a 17.6% error

plementation is somewhat slow since it requires a databad@t On the TDT Corpus. The new method is still heuris-
query per sentence. However, it could be sped up considel'C in nature and a more principled use of the LCA con-
ably using standard information retrieval query optimizationCeDtS qu?ld' in all likelihood, improve performance further.
techniques. A second weakness is that performance of thEVC additionalimprovements could be made to the LCA ap-
LCA expansion currently requires sentence breaks. A modifiPr0ach. First, one difficulty with the LCA method is that

cation of this approach would be to use a fixed-sized window'"€" ON€ gives a query to LCA such as “Thank you and
rather than sentences as the atomic unit for expansion. good-night,” the concepts one gets back are essentially ran-
dom. The current method is fairly robust with respect to a

Discourse Based HMM Segmentation The second seg- reasonable amount of random noise, but perhaps a better ap-
mentation method uses a Hidden Markov Model to modeproach would be to model the noise words and not pass them
“marker words,” or words which predict a topic change. Theto LCA at all. The second approach is to make use of the
model consists of one or more states for the fNstentences  discourse features as well. This is discussed further below.

of a segment, one or more for the ldétsentences, and one hod h h 230
or more for the remainder of the segment. So while the LCAHM'VI Method. The HMM segmenter has a 23% error rate

segmenter relies on shifts in content, the HMM segmenter i&" the TDT Corpus. One caveat is that this approach may rely

relying on words which predict the beginning or end of a Seg_on the similarity of the training data to the test data somewhat

ment without regard to content. This is somewhat similar tg"€@Vily- Still, it shows that very simple discourse modeling

CMU's use of vocabulary features. The model is trained us®@" provide useful information. This method could be made

ing segmented data. Unknown word probabilities were hanlmc,’r_e rot])cuﬁ[ by explicitly modelmlg “§eguelz” snd other regu-l
dled with a very simple smoothing method. arities of the source. For example, it would be more genera

to tag place names and names of reporters and to learn the
Additional Features. In addition to the word probabilities, probability of segment boundaries relative to the tags rather
other features were modeled. These included sentence lengtfan to the specific names as the current approach does.

(which would be implicit in a word based segmenter), serial h byi o h hvbrid
clustering tendency [3], and distance from previous occur- ne Future Onep vious question|is to what ex'Fenta ybri
roach would improve performance over either method

rence. Each of these features was measured as a stand F | d LIMM based
score, and state probabilities were estimated from the trair2'ON€. FOr example, one could use an ased segmenter

ing data. These three features yielded a very slight improve‘"’—lnd sample the LCA concepts at locations where the distri-

ment over the words alone. Part of the reason why they digution is less peaked, i.e. use LCA in places where one least
sure about a break. A second reasonable hybrid would be to



combine the content-based HMM segmenter used by DragoBragon’s use of unigram language models trained on clus-
with a simple discourse-based HMM segmenter. ters of segments, and the UMass local context analysis tech-

nigue. The lexical features complement this information

It may also be possible to leverage the strengths of the two a%-y making more fine-grained judgments about those words
proaches as follows. The LCA segmenter works in an unsus;

pervised manner but is somewhat slow. The HMM segment that correlate—both positively and negatively—with segment

i< very fast. but requires training data. Over time. one coul oundaries. The feature selection algorithm automatically
Y ' q g ' ’ learns” how to segment by observing how segmentation

usde the LCA.Se%menterr] on a saerIg O.f thg mc;)mlﬂg fdata 'Boundaries are placed in a sample of training text. This algo-

lerel\‘/rl ts(,)eprrﬁ\éln tirlijr? (t)?c}e(ra trg 'l?;ete ttrzglzligtgribiia:sr L etanStrrithm incrementally constructs an increasingly detailed model

as the Iagguage use shifts over tFi)me P Eio esti_mate the probability that a sggmen_t boundary is.place_zd
' in a given context. Each of these ingredients is described in

2.4. CMU Approach more detail below.

Motivation The original motivation for the CMU segmen- L@nguage Models. In the CMU approach the relative be-
tation research arose in the context of multimedia informanavior of anadaptivelanguage model is compared ts@tic
tion retrieval applications. In particular, both the News-on-{1igram language model in an on-line manner. The basic idea

Demand and video library projects within Informedia Digital IS that the adaptive model generally gets better and better as

Libraries project require segmentation of the video stream folt S€€S more material that is relevant to the current “topic”
accurate and useful indexing, retrieval, browsing, and sum@' & ségment. However, when the topic changes, the perfor-
marization. mance of the adaptive model degrades relative to the trigram

model since it is making its predictions based upon the con-
In order to find natural breaks in a video stream, it is impor-tent words of the previous topic. These language models are
tant to make use of the concurrent and often complementaryssentially the same as those employed for the speech recog-
information in the text (closed captions or speech output), aunition system used in CMU’s entry in the recent TREC eval-

dio, and image streams. The CMU approach was designeghtion for spoken document information retrieval.

around the idea that various “features” of these multiple me- o

dia sources should be extracted and then combined into VO Static trigram models are used—one for the CNN ex-
statistical model that appropriately weighs the evidence, ang€fiments and one for Reuters experiments. The CNN ex-
then decides where to place segment boundaries. For mul2€MiMents use a static trigram mogg (w | w—»,w-1) with

media, the relevant features might include questions such a&:Vocabulary of roughly 60,000 words that is trained on ap-

Does the phraseoMING UP appear in the last utterance of pro.ximatelylg’)o million words (four aqd a hglf years) of tran-

the decoded speech? Is there a sharp change in the videgripts of various news broadcasts, including CNN news, but
stream in the las20 frames? Is there a “match” between the excluding those Journal Graphics transcriptions that overlap
currentimage and an image near the last segment boundary¥ith the time frame of the TDT Corpus. The Reuters exper-
Are there blank video frames nearby? Is there a significanfMeNts use a trigram model that has a vocabulary of 20,000

change in the frequency profile of the audio stream in the nex{/0rds and is trained on approximately 38 million words of
utterance? Wall Street Journal data. Both models use the Katz backoff

scheme [9] for smoothing.

There are several key ingredients in this basic approach ap- , ,
plied to the subproblem of text segmentation: The method used to construct the adaptive model is to treat

the static trigram model as a default distribution, and then to

dd certain features based on semantic word classes in or-

1. Content-based features derived from a pair of Ianguage%r to form a family of conditional exponential models. The
Isth hel “ le” ch . i . . . '
models that are used to help gauge *large scale” chang etails of this model are described in [1]. Since the adap-

of topic. . . : .
tive model should improve as it sees more material from
2. Lexical features that extract information about the locakhe current topic (or event), a segment boundary is likely
linguistic and discourse structure of the context. to exist when the adaptive model suddenly shows a dip in
) ) ) ] performance—a lower assigned probability to the observed
3. A new machine Iegrnlng algorithm that '_ncreme”talIonrds—compared to the short-range model. Conversely,
selects the best lexical features and combines them withan the adaptive model is consistently assigning higher

the information provided by the language models topopapilities to the observed words, a partition is less likely.
form a unified statistical model.

Lexical Features. The use of simple lexical features is in-
The use of language models, as described below, is gearé@nded to capture words or phrases that are commonly used
toward finding changes of topic—whether within or acrossto begin or end a segmentin a particular domain, as well as to
segment boundaries. This component is similar in spirit teeXtract simple linguistic and discourse clues that a boundary



is near. Thus, wherp is chosen to be the empirical distribution of a
sample of training event§(w, b) }, the maximum likelihood

riterion is used for model selection. The training algorithm
for choosing the parameters to minimize the divergence is the
Improved lterative Scalinglgorithm presented in [4].

As an example, in the domain of CNN broadcast news,
story often will end with a reporter giving his or her name
and the location of the reportHIS IS WOLF BLITZER RE
PORTING LIVE FROM THE WHITE HOUSE In the domain
of Reuters newswire, on the other hand, which originates aghis explains how a model is chosen once the features

written communication, a story is often introduced by record-f1, . . ., f,, are known, but how are these features to be found?
ing the day on which the event occurred TEXAS AIR NA- One possibility is a greedy algorithm akin to growing a deci-
TIONAL GUARD FIGHTER JET CRASHED FRIDAY IN A RE sion tree, although the models are closer to the form of cer-
MOTE AREA OF SOUTHWEST TEXAS tain neural networks. In brief, thgain of a candidate is esti-

mated as the improvement to the model that would result from

The lexical features enable the presence or absence of pamgading the feature and adjusting its weight to the best value
ular words in the surrounding context to influence the statisti- X

: After calculating the gain of each candidate feature, the one
cal segmenter. Thus, the presence of the VREEIORTINGIN 9 9

the broadcast news domain, or the presence of the med with the largest gain is chosen to be added to the model, and

. ) . X o all of the model’'s parameters are then adjusted using iterative
DAY in the newswire domain might indicate that a segment P J 9

boundary is nearby. The way in which the learning algorithmscalmgf In th|§ manner, an_exponennal model is incremen-
' . . . tally built up using the most informative features. See [4] for

actually chooses and uses these features is described brie Niails

in the next section. ’

. - . Results The exponential models derived using feature in-

Feature Induction The procedure for combining the evi- X . o

dence in the language mgdels and the lexical feat%res is basgacuon give a probqpllltyp(b = YEs|w) that a boundary

Xists at a given position in the text. In order to actually seg-

on a statistical framework callédature inductiorior random ment text, this probability is computed in an “on-line” man-

fields and exponential models [2, 4]. The idea is to construc}'er, scanning the text sequentially. Itis assumed that sentence

a model Wh'Ch assigns to each position in the d.a.ta Stre"’.‘rﬂoundaries have been identified, and segment boundaries are
a probability that a boundary belongs at that position. Th|sOnly placed between sentences. A segment boundary is hy-
probability distribution is incrementally constructed as a log- )

linear model that weighs different “features” of the data. Forpothesmed if (1) the probabiliy(b = vEs|w) exceeds a

simplicity, it is assumed that the features are binary question re-specified threshold, and (2) a boundary has not been
plicity, yq %reviously placed in the immediately precedingentences.

One way to cast the problem of determining segment bound¥he parameters ande were chosen on a portion of heldout
aries in statistical terms is to construct a probability distri-training data to minimize the error probability, and were set
bution ¢(b|w), whereb € {YES,NO} is a random variable toa = 0.15ande = 5for CNN data, andr = 0.25 ande = 2
describing the presence of a segment boundary in conterin newswire data.

w. Consider distributions in thénear exponential family

. As described in the TDT Evaluation Plan, the direct evalu-
A(f, q) given by

ation for a hypothesized segmentatibyp with respect to
1 the reference segmentatioef is computed as a probabil-
o(f,q) = {Q(b|w) = Z—()e”(“’) QO(b|W)} ity p(error|ref ,hyp,k). This is the probability that a ran-
At domly chosen pair of words a distance lofvords apart is
whereg,(b|w) is a prior ordefaultdistribution on the pres- incons.ist.entI.y classified; that is, for one of the segmentation.s
ence of a boundary, andl- f(w) is a linear combination of the pair lies in the same segment, while for the other the pair
binary featuresf;(w) € {0,1} with real-valuedfeature pa- ~ SPans a segment boundary.

rametersi;: The CNN segmentation model was trained on approximately
one million words of broadcast news data not included in the
A fW) = MAW) + X fow) + o Anfaulw) - TDT Corpus, using the broadcast news language models de-

scribed above as the basis for language model features. A
total of 50 features were induced, and the model was trained
using the Improved lterative Scaling algorithm. The selec-
The judgment of the merit of a modek Q(f, ¢,) relativeto  tion of each feature from the pool of several hundred thou-
a reference distributiop ¢ Q(f, ¢) during training is made sand candidates takes on the order of 30 minutes, and then

The normalization constang, (w) = 1+ e () insure that
this is indeed a family of conditional probability distributions.

in terms of the Kullback-Leibler divergence training all of the weights takes roughly five minutes, on a
(b]w) high-end workstation. No cross-validation was done to de-

plb|w . . ) .
D(pllq) = Z p(w) Z p(b|w)lo _ termine the best stopping point, nor was the resulting model

= be{YESNO} (b|w) smoothed in any way. One of the advantages of feature induc-



tion for exponential models, versus more standard machine
learning techniques such as decision trees, is that the proce- TWA
dure is quite robust against over-fitting. When the resulting TDT | CNN | Reuters| cc | rec
50 feature model was then evaluated on the CNN portion of || Dragon| 12.9 | 16.8 | 123 | 25.5)| 33.6
the TDT Corpus, the error rate was 12.5%. The exact match || UMass | 17.6 | — — - | =
precision and recall were 72.2% and 72.3% respectively. CMU — [125] 155 | — | —

The segmentation model for the Reuters portion of the TDT

Corpus was built using a collection of approximately 250,000 Table 1: Segmentation error rates (percentages).
words of AP newswire data, Wall Street Journal articles, and

Reuters headline news segments extracted from the Internet.

The language models used were trained on 38 million wordéem models stories as instances of topics described by sim-
of Wall Street Journal data. Because of the lack of trainingple unigram statistics; UMass, in one approach, treats stories
data from the Reuters domain, as well as the general absenae collections of similar queries to an information retrieval
of strong cue phrases for story transitions in this written do-system, and in another approach, as a set of words bounded
main, it was expected that the resulting segmentation perfoy marker words and phrases; and CMU’s system exploits
mance would be inferior to that obtained for broadcast newshoth content and discourse features simultaneously, training
and this was indeed what happened in the CMU results. A 5@n exponential model to combine information from a trig-
feature model was induced on the training set, and when evagjer/trigram language model with features that are associated
uated on the Reuters portion of the TDT Corpus, the resultingvith story boundaries.

0
error rate was 15.5%. This variety of approaches bodes well for the future of work

The Future The CMU segmentation research carried outon segmentation. It not only means that improvements on the
under the TDT project is clearly only a beginning, and therecurrent task are likely to be realized by combining some of
are many directions in which this work can be extended, imthese different ideas, but also that a variety of different tasks
proved, and made more practical. There is current work goingan be addressed by selecting the approach with the appro-
on at CMU to build on these results to develop segmentatiopriate strengths. For example, on the CNN task, for which
algorithms for multimedia data, making use of parallel text,a large amount of well-matched training data was available,
audio, and video streams. CMU's feature-learning mechanism proved to be very effec-
The CMU approach has an economy of scale since the la ti_vg; on the Reuters task, for which well-matched training ma-
. . Nerial was not available, Dragon’s content-based system was
guage models that are used are identical to those that are uslen%re robust (see Table 1)
for speech recognition systems constructed in the same do- '
main. Improved language models for speech recognition caihe indirect evaluation of segmentation (described in Sec-
be expected to yield improved performance for segmentatioriion ) shows that carefully transcribed broadcast data can
The exponential models resulting from feature induction argorobably be segmented well enough with the current meth-
very “concrete” in the sense that only a handful of specificods that subsequent processing (tracking, at least) will not
features are extracted, and the behavior of the resulting seguffer much. It remains to be seen if the same can be said
menter can be well understood—there are specific “explanasf not-so-carefully transcribed data, such as that produced by
tions” of the decisions that it makes. Moreover, since theclosed-captioning or recognition. The one small test that has
model directly assigns a probability distribution to bound-been done using the TWA Corpus indicates that this may be a
aries, a confidence in the decisions is easy to assign. hard problem. On the other hand, in TDT segmentation of the
The challenge of future work is to preserve these Strengthbroadcast stream is not an end in itself, buF an enabling tech-
hile intearating th I N i ths of the D ﬁology for subsequent tracking and detection processes, and
while integrating the complementary strengths ot the Lragory may prove to be the case that methods of the type developed

and UMass approaches. here will be adequate to support these technologies.

2.5. Discussion 3. New Event Detection

One of the remarkable outcomes of the TDT study on segkeventdetectionis the problem of identifying stories in sev-
mentation is the diversity of ideas and techniques that haveral continuous news streams that pertain to new or previ-
been brought to bear on this problem. Broadly speakingously unidentified events. In other words, detection is an un-
these ideas and techniques fall into two classes: those thatipervised learning task (without labeled training examples).
focus on storycontentand those that focus on story struc- Detection may consist of discovering previously unidenti-
ture ordiscourse In the details, however, there is very little fied events in an accumulated collection (“retrospective de-
similarity between approaches. Dragon’s content-based sysection”), or flagging the onset of new events from live news



feeds or incoming intelligence reports in an on-line fashionthose stories which discuss only one of the 25 target events
(“on-line detection”). Both forms of detection by design lack and which are flagged as such with a YES flag for that story.
advance knowledge of the new events, but do have access There are 1131 such storiés.

unlabeled) historical data as a contrast set. . .
( ) Retrospective Event Detection System output for the ret-

In the TDT study, the input toetrospective detectiois the  rospective event detection task is the clustering information
entire corpus. The required output by a detection system isecessary to associate each of the stories with a cluster. (Each
a partition of the corpus, consisting of story clusters whichstory is constrained to appear in only one cluster.) This in-
divide the corpus into event-specific groups according to théormation is recorded in a file, one record per story, with
system’s judgment. (CMU’s and UMass'’s methods exhibitrecords separated by newline characters and with fields in a
considerably better performance when they are allowed toecord separated by white space. Each record has five fields in
place stories within multiple event groups.) the following format: ‘Cluster ~ N; Story Decision

. . o . Score ", where:
The input toon-line detectioris the stream of TDT stories W

in chronological order, simulating real-time incoming news
events. The output of on-line detection is a YES/NO deci-
sion per story made at the time when the story arrives, in-
dicating whether this story is the first reference to a newly e N; is the number of stories used to train the system to the
reported event. A confidence score per decision is also re- event. (Since this is a detection task, = 0, but it is
quired. These scores are used later to investigate potential kept in the output to maintain format uniformity across
trade-offs between different types of errors(misses and false  different tasks.)

alarms) by applying different thresholds on these scores and
thus shifting the decision boundary.

¢ Clusteris anindex numberinthe rangg, 2, ...} which
indicates the cluster (event) affiliation of the story.

e Storyis the TDT corpus index number in the ranfe

2,...15863 which indicates the story being processed.
How to use the above information to detect unknown events

presents new research challenges. There are multiple ways to® Decisionis either YES or NO, where YES indicates that
approach the problem. the system believes that the story being processed dis-

cusses the cluster event, and NO indicates not. (Again,
« The CMU approach to retrospective event detectionisto ~ Decision should always be YES since the story is a

cluster stories in a bottom-up fashion based on their lexi- ~ Member of its cluster, but it is retained in the output for-
cal similarity and proximity in time. The CMU approach mat so as to maintain format uniformity across different
to on-line detection combines lexical similarity (or dis- tasks.)

tance) with a declining influence look-back window of o gcoreis a real number which indicates how confident

k days when judging the current story, and determine  he system is that the story being processed discusses
NEW or OLD based on how distant of the current story  the cluster event. More positive values indicate greater
from the closest story in thie days window. confidence.

e The UMass approach to on-line detection is similar to . o
the extent that it uses a variant of single-link cIusteringThe performance of retrospective detection is evaluated by
and builds up (clusters) groups of related stories to repmeasuring how well the stories b_elonging to each ofth_e target
resent events. New stories are compared to the grougd/ents _match the stories belonging to th_e porrespondmg cl_us—
of older stories. The matching threshold is adjusted ovefer- This presents a problem, because it is not known which
time in recognition that an event is less likely to be re- of the clusters corresponds to a particular target event. Thus it
ported as time passes. UMass’ retrospective detectiol$ Necessary to associate each target event with (exactly) one

method focuses on rapid changes by monitoring suddefluster to determine this correspondence. This was accom-
changes in term distribution over time. plished by associating each target event with the cluster that

best matches it. The degree of match between an event and

* The Dragon approachiis also based on observations ovgrcluster is defined to be the number of stories that belong to
term frequencies, but using adaptive language modelgoth the event and the cluster.

from speech recognition. When prediction accuracy of ] . .
the adapted language models drops relative to the baci¥ote that retrospective detection uses the entire TDT corpus

ground model(s), a novel event is hypothesized. of 15,863 stories, but is evaluated only on the manually la-
beled stories of 25 events (containing about 7% of the total
3.1. Detection evaluation stories).

. . . SThere are a total of 1382 non-NO event flags and 1372 flagged stories.
The detection task used the entire TDT StUdy corpus as Irt‘.LO stories were flagged by two events.) However, 240 of these stories were

put. However, detection performance was evaluated only oftlagged as BRIEF, and one was flagged as YES by two events.



On-line New Event Detection The on-line new eventdetec- Evaluation measures Given a story and a particular event
tion task is to output a new event flag each time a story disin consideration, the output of a detection system is a
cusses a new event. Since evaluation is performed only ovefES/NO decision with a confidence score. The performance
the set of target events, the small number (25) of type | trialsaverage over a set of test stories is used to evaluate the de-
presents a problem for estimating performance. This problertection system. Five evaluation measures are reported in this
is addressed by artificially changing the corpus so as to mulstudy: miss rate, false alarm rate, recall, precision, and'the
tiply the number of type | trials bW, (With Ny, = 10). measure. The miss and false alarm rates were the “official”
This is done in the following way: measures of the pilot study.

. . . The F; measure[14] was used as a way of balancing re-
e The corpus is processed once after deleting all stories - i S
with BRIEF event tags. call and precision, in a way that each of them is given

equal weight. A more general form of tHemeasureis
e The corpusis processed a second time afterfurtherdeleFB(r,p) = % where is the parameter allowing dif-
ing the first story which discusses each of the targeferential weighting ofp andr. The F-measure is commonly
events. used as an optimization criterion in binary decision making,
when recall and precision are considered as the primary per-

e The corpusis process i» — 1 more times, each time
P P edbkip formance measures.

further deleting the subsequent first (next) story which
discusses each of the target events, until the Nig,  In addition to optimizing binary decisions, another objective
stories discussing each of the target events have beesf the TDT study is the ability to achieve a tradeoff between
skipped. different types of performance scores at any level desired. A
Decision Error Trade-off (DET) curve between misses and

System output for the on-line detection task will be a dec4alse alarms is used for this part of the evaluation.

laration for each story processed. This output is to indicate

whether or not the story discusses a new event. This infor3.2. The CMU Approach

mation was recorded in a file in ASCII format, one record _. ,

per story, with records separated by newline characters ar]@ven the lack of knowledge about events, event detection

with fields in a record separated by white space. Each record essentially a discovery prgblem—l.mlnlng Fhe datefor

has six fields in the following format:Event N, Story new patterns, in a new paradigmaiery-fregretrieval. CML,J

Decision Score jekips Where: takes an app_rof';\ch base_d on group average agglomerative text

clustering, aiming the discovery of natural patterns of news

e Eventis an eventindex number. (Since there is no evenplones over concgpts (ngmon terms) and t'me' This ap-
affiliation for the on-line detection task, Event is set to proach creates a hierarchical tree of clusters, with the top lay-
zero, but it is retained in the output format so as to main-<"> representing a rqu'g.h diyision into genera} topics, and the
tain format uniformity across different tasks.) lower ones a flngr division .|nto narrower topics qnd events.

CMU also investigated an incremental average-link cluster-

e N, is the number of stories used to train the system tang method that produces a single level partition of the TDT
the event. (Since this is a detection tadk, is identi-  corpus.
cally zero, but it is retained in the output format so as to

maintain format uniformity across different tasks.) Incremental clustering For story and cluster representa-

tion, CMU uses the conventional vector space model.[13]
e Storyis the TDT corpus index number in the ranffe A story is presented as a vector whose dimensions are the
2, ...15863 which indicates the story being processed.stemmed unique terms in the corpus, and whose elements

Decisionis either YES or NO. where YES indi h are the term weights in the story. By “terms” we mean
e Decisionis either or N0, where Indicates that s or phrases in general. A cluster is represented using

tEe system Eellr]evEs that thc'f story is thedﬂr;totq d&scusa prototype vecto or the centroid which is the normalized
the event which the story discusses, an Indicateg, m of the story vectors in the cluster. For term weighting

not. in a story vector, CMU tested several typical term weight-
e Scoreis a real number which indicates how confidenting schemes which combine the within-story term frequency
the system is that the story being processed is the first toT F) and the Inverse Document Frequency (IDF) in different

discuss the event. More positive values indicate greatéivays. As implementation, CMU uses the mechanisms pro-

confidence. vided in SMART, a benchmarking retrieval system developed

) o ) by the Salton group at Cornell [13]. The term preprocess-

* jskip IS the number of initial stories that have beenjng includes removal of stop words, stemming, and then term
skipped for each of the target events, in the rafl@e  \eighting. The “Itc” option (in the SMART notation) yielded

1, .. .Nskip }- in the best clustering results in the experiments, where the



weight of termt in storyd is defined to be: until the bucket size (number of clusters in it) is reduced
o by a factor ofp.
w(t,d) = (14 1logy T'F4,qy) x IDF;/||d]|.
) . o 4. Remove the bucket boundaries (assemble all the GAC
The denominatof|d|| is the 2-norm of vectod, i.e., the clusters) while reserving the time order of the clusters.
square root of the squared sum of all the elements in thatvec-  |jge the resulting cluster series as the updated partition
tor. The similarity of two stories is defined as the cosine value ¢ te corpus.

of the corresponding story vectors. Similarly, the similarity of
two clusters is defined as the cosine value of the correspond-5. Repeat Step 2-4, until a pre-determined number of clus-
ing prototype vectors. ters is achieved in the final partition.

Having stories and clusters represented in vectors, the incre-g Periodically (say, once per 3 iterations in Step 2-4) flat-
mental clustering is straightforward. For each consecutive  tan each cluster. and apply GAC internally to each flat-

story, compute the cosine similarity of this story and each  {opeq cluster for re-clustering. This is CMU’s augmenta-
cluster centroid in the accumulated set. If the similarity score  +ion to Cutting and Pedersen’s algorithm. It enables sto-

between this story and the closest cluster is above a threshold  je5 helonging to the same event, but initially assigned to
(pre-selected), then add this story to the cluster as a member, gjterent buckets, to be re-assigned to a common cluster.
and update the prototype vector correspondingly. Otherwise,

add this story as a new cluster in the set. Repeat the abo

until the corpus is done. \8n-llne Detection Algorithm CMU’s on-line detection is

implemented as below:
This algorithm results in a flat partition of the TDT corpus.

The number of clusters in the partition depends on the clus- 1 - The algorithm starts with an empty set (“PAST”) of clus-

tering threshold in Step 3. When setting the threshold to a ters, with the pre-determined values for the following
value of 0.23, we obtained a partition of 5,907 clusters which parameters:

yielded the optimal result evaluated using the 25 events la-
beled by humans (see Section). ¢ the detection thresholdvhich is the minimum
score for the system to say that the current story

Group-average based clustering The core part of CMU'’s i
belongs to a new event;

method is an agglomerative algorithm nan@@dup Average

Clusterind8, 6] which maximizes the average pairwise simi- e the combining thresholavhich is the minimum
larity between stories in each cluster. This algorithm uses the similarity score for adding a story as a new mem-
same vector representation for documents and clusters and ber of an existing cluster;

produces a binary tree of story clusters in a bottom-up fash- « the window sizevhich is the maximum number of
ion: the leaf nodes tree are single-story clusters; a middle- clusters in PAST, or the aging limit (in terms of
level node is the centroid of the two most proximate lower- days) of a cluster to be a member in PAST.

level clusters; and the root node of the tree (if the algorithm
is allowed to reach this point) is the universal cluster which 2. Read the next story as “the current”. Compute the simi-

contains all sub-clusters will all the stories. The GAC al- larity of this story and all the clusters in PAST.
gorithm has a quadratic complexity in both time and space,
although envisioned improvements based on [15] and other e Ifthe largest similarity value is above tetection
work at CMU should yield sub-quadratic space complexity, threshold then announce “YES” as the detection
without increasing time complexity. In order to reduce the ef- of a new event; otherwise, announce “NO”.
fective complexity and to exploit natural temporal groupings e If the largest similarity value is above tiokuster-
of events in news-streams CMU used the following modified ing thresholgthen add the current story to the clos-
form of GAC clustering: est cluster, and update the prototype vector of the
cluster correspondingly; otherwise, add the current
1. Sortthe TDT stories in chronological order, and use this story an a new cluster in PAST, and remove the old-
as the initial partition of the corpus where each cluster est cluster from PAST if it exceeded the window
starts with a single story. size.

2. Divide the partition (a cluster series) into non-
overlapping and consecutive buckets whose size is fixed
in terms of the number of clusters they contain.

3. Repeat the above step until the end of the input series.

This algorithm is similar to the incremental clustering algo-
3. Apply GAC to each bucket, i.e., combine lower-level rithm used for retrospective detection (Section ), except for
clusters into higher-level ones in a bottom-up fashiontwo modifications:



e The PAST reference is restricted to a time window of 4. Ifthe documentexceeds the the threshold of any existing
fixed number of stories or days which are closest to the  query flag the document as not containing a new event.
current story, instead of referring an infinite past.

e A detection threshold, independent from the cluster 5. Save the document’s query (and threshold) in the query
combining threshold, is used to differentiate NEW from set.
OLD.

For the type of query used in this system, InQuery’s belief
3.3. The UMass Approach values can range from 0.40 to 1.00. UMass used a threshold
Retrospective Detection UMass used two different ap- abovein step 2 thatis somewhere between 0.40 and the belief
proaches to retrospective event detection: of the document against its own query. We tried various val-

ues, but found that values from 20-30% of the way between

In the first approach, the TDT collection was examined andpg o worked well in general, with a lower threshold was
all words and noun phrases that occur very often in the colz,ore useful with a larger set affeatures.

lection that danotalso occur often in a separate training col- _ _
lection were identified as potential triggers for clusters. Eact/Mass also applied an aging factor to the thresholds: over
of those terms was then examined to see if its occurrence itime, the threshold for matching grew higher and higher. This

documents was heavily concentrated in some small range #fas meant to model the idea that an event is less and less
time. If not, the term did not trigger an event. likely to be reported as time passes—i.e., it slowly becomes

news that is no longer worth reporting. UMass found that

For a term that did trigger an event, all documents containingy,q aging factor was an important factor in achieving good
the term within a time range (determined by the standard degits.

viation of daily occurrence) were handed to a relevance feed-

back algorithm and a query representing event was createg._4_ Dragon Approach

UMass applied that query to the collection as a whole to find

documents that matched the event. A final trimming step reBragon’s online and retrospective detection systems are ap-
moved outlier stories by considering the concentration of stoplications of the clustering technology used to train back-
ries over a range of days. ground models for the segmenter. As described in the seg-
mentation report, this technology is an implementation of a

The second approach was a bottom-up agglomerative Clu%-means clustering algorithm

tering of the documents similar to CMU’s. Document sim-
ilarity was accomplished using the same queries created b@nline Detection Dragon followed CMU's lead and ap-
on-line detection (described below). Documeérindj are  proached the online detection task as a clustering problem
compared by running quetyagainst document, then query in which the stories being clustered could be examined only
j against document and averaging the resulting two belief once. With this interpretation, online detection is a natural ap-
scores. Only document pairs that are more than two standagglication of k-means clustering, in which one executes only
deviations away from the mean comparison score are eligibléhe first pass of the algorithm. Following this procedure, the
to invoke clustering. This provides a stopping criterion for first story in the corpus defines an initial cluster. The remain-
the clustering. ing stories in the corpus are processed sequentially; for each
one the “distance” to each of the existing clusters is com-
puted. A story is inserted into the closest cluster unless this
distance is greater than a threshold, in which case a new clus-

] ter is created. The decision to create a new cluster is equiva-
1. For each document, extract themost important fea- |ant to declaring the appearance of a new event.

tures needed to build a query representation of this doc-
ument. The old distance measure Given that several iterations of

Dragon’s implementation of the-means algorithm produces
2. Calculate a belief threshold for this document's corregood clusters for the segmenter, one would expect that the
sponding query by running the query against its sourceirst pass alone would provide a credible basis for an online
document. That belief value is an upper bound on thejetection system. This turns out not to be the case. In fact,
threshold; it is adjusted downward as described below. the performance of Dragon’s clustering algorithm in its first

. . ._iteration turns out to be horrible, essentially dividing the cor-
3. Compare the new document against all previous querle?i7

On-Line Detection The UMass algorithm for on-line event
detection follows these steps:

If the document does not exceed the the threshold of a us into chunks of about 50 consecutive stories and declaring

. S ese to be clusters.
existing query flag the document as containing a new
event. The problem in the first pass arises due to a subtle property of



the distance measure, for each site. Figures 3, 2 and 4 are the DET plots of retro-
spective detection systems.
Sn/S

d = ) (su/9)log (cn +52)/(C + S) CMU optimization efforts In order to optimize results,
" CMU is investigating the following: dealing with out-of-
cn/C vocabulary (OOV) terms; incremental updating of IDF; using

+ Z(cn/C’) log

(en+80)/(C+S)’ time windows and declining weighting factors; dynamically

setting Clustering thresholds; and, unsupervised incremental
wheres, andc, are the story and cluster counts for word learning.

Wy, With S = >~ s, andC = Y ¢,,. The two terms have the

following interpretation: the first is the distance between thel he incremental updating of Inverted Document Frequency
story and the cluster after the story has been inserted into if/DF) is defined to be:

and the second is the distance that the cluster itself moves as

a result of incorporating the story. IDF, 1) =108y (N(z)/N(z.t))

A problem arises for very small clusters: because of the merg- ] _ .
ing of the story and cluster distributions in the denominatoPVheret is a term,z is the current storyN(,) is the number

of the log, a story can actually “drag” a small cluster closeOf stories in the sequence from the f|rst story in the corpus
enough that the distance to it is small, and therefore beloTDT or JGI+TDT) to the current point, andn, ¢ is the
threshold. Thus whenever a new cluster is created by the clu§umber of stories which constrain ternin the sequence to
tering algorithm, all subsequent stories are found to be closi€ current poink.

in distance until the cluster gets big enough (about 50 storie§y, terms of using time constraints in on-line detection, CMU

given our threshold settings), at which point a new cluster isied two methods. The first method was to use a time window
created and the cycle begins again. of k stories, denoted a¥,, which is prior to the current story.
The new measure Dragon fixed the measure for the online The detection decision on the correct staryis based on the
task by smoothing the cluster distribution used in the dis-Comparison of this story with each story in the window:
tance computation with a background distribution, and then score(z) = 1 — max {cos(Z d;)}

preventing the cluster from being “dragged” by the story d; €Wy, ’

distribution. Two improvements were also made: a Story-another method was to use a decaying weighting function to

background distance was subtracted from the story-clustg{gjust the influence of stories in the window. There(z)
distance (to compensate for the fact that small clusters teng this method is modified as
to look a lot like background after smoothing), and a decay .
term was introduced to cause clusters to have a limited du- score(r) =1 — max {ﬁcos(f,d:)}.
ration in time. This term is just a decay parameter times the €Wk
difference between the number of the story represented by thehis modification makes the decision rely more on the stories
distributions,, and the number midway between the first andwhich are closer to the current time, than the stories far in the
last stories in the cluster. past. In other words, it is a smoother way to use a time win-
The new measure has the form dqw than.a uniformly weighted yvindow. CMU fognd that a
window size of 700 is about optimal when not using the de-
un /U caying weighting function, and a size of 2500 optimal when
d=7 (sn/S)log o ;(; + decay term using the decay weighting. The relative improvement from
" " using decaying weights is about 2% in tigmeasure over a

wherec, is the smoothed cluster count for woug,, andu,, ~ fixed window.
is the background unigram count with= 3" u,,.

UMass optimization efforts The word-trigger approach

Tuning the online detection system means adjusting the decdyfovided reasonably high-precision clusters, but realized bad

parameter and the overall threshold. Currenﬂy these can On’&eca": the cluster sizes were too small. UMass believes that
be tuned on the test corpus. the recall can be improved by relaxing some constraints.

For the bottom-up agglomerative approach, UMass found the
unsurprising result that higher-dimensionality query repre-
The three sites have obtained results for retrospective and osentations were more effective. 100- and 50-term queries
line detection, evaluated using the various metrics discussediere noticeably more effective than 10-term queries, in the
including F1 and DET curves. Tables 2, 3 and 4 list the resame way that they were for on-line detection. However,
ported results for several of the runs from the various sitesin this case the 50-term queries outperformed the 100-term
Figure 1 shows the DET curves of the best online runs, ongueries.

3.5. Results, Analysis, and Future Work
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Run %Miss %f/la %Recall %Prec micro-avg F1 macro-avg F1
CMU incremental 38 0.09 62 67 0.64 a7
CMU gac top-level 17 0.32 83 43 0.56 .63
Dragon 39 0.08 61 69 0.65 .75
UMass 100T 66 0.09 34 53 0.42 .60
UMass 10T 67 0.50 33 16 0.21 .53

Table 2: Retrospective Detection Results: Partition Required. (Official evaluation)

For retrospective detection, UMass did only a small amount  redundant parts and maximize the information in a sum-
of work with alternate types of features (e.g., phrases) for  mary?
these experiments; preliminary results suggest that multi-

word features are helpful e How to make a better use of temporal information in

event detection and tracking than we have done? In
Similar to CMU’s time-windows UMass found that the time the case of on-line detection, for example, we have only
sensitive nature of event reporting can be captured by aging  taken the simplest approach of imposing a time window
the belief thresholds. For a given documents’ query, UMass  to the data stream.

raised the threshold incrementally as each subsequent story
was processed, making it more and more difficult for later
stories to pass the threshold. This aging of the thresholds
provided substantial improvements in precision without im-
pacting recall noticeably. Note, however, that the aging helps
performance of unexpected events (e.g., disasters) but hurts
performance of long-running events such as the O.J. Simpson
trial.

e How to improve the accuracy of on-line detection by in-
troducing limited look-ahead? For instance, noting that
two or three stories arriving very close in time are highly
related to each other but different than anything in a pre-
vious time interval would be a very good indicator of a
new breaking event.

Dragon’s Optimization Directions Dragon believes that 4. E_Vem Tr_aCklng o

further careful research on the clustering measure can prd-n® TDT event tracking task is fundamentally similar to the
duce performance gains in its system. The fact that the re@tandard routing and fllterllng tasks of Informatlon Rgt_neval
rospective evaluation indicates that the new distance measuft)- Given a few sample instances of stories describing an
does better than the old one suggests that the clustering of tif¥ent (i-e., stories that provide a description of the event), the
background topics used by the segmenter should be revisite§SK is to identify any and all subsequent stories describing

and the segmentation experiments rerun with topics based gh& Same event. Event tracking is different from those IR
the new measure. This is an area for future work. tasks in that events rather than queries are tracked, and in that

events have a temporal locality that more general queries lack.
3.6. Open Issues These differences shift the nature of the problem slightly but
at the same time shift the possible solutions significantly. The
Some related issues pertaining to event detection have n@krrowing of the scope of information filtering encourages
been addressed in the pilot TDT study, but evolve naturallynodifications to existing approaches and invites entirely new
therefrom, including: approaches that were not feasible in a more general query-
centric setting.

» How to provide a global view of the information space s report discusses approaches to Event Tracking by re-
to users and navigation tools for effective and efficientggarch teams from CMU, the University of Massachusetts,
search? and Dragon Systems.

e Some approaches generate a cluster hierarchy automad-1. Tracking evaluation
cally. How to choose the right level of clusters for user’s

attention that best fits the information need of the user?EaCh event is to be treated separately and independently. In

training the system for any particular target event, allowable

. . . . information incl he trainin h nd even
e How to summarize the information at different degrees, ormation includes the training set, the test set, and event

o flags for that target event only. (No information is given on
of granularity, i.e., at a corpus level, a cluster level, a

. any other target event).
story level, and a sub-story level? How to provide user- y 9 )

specific or query-specific summaries? How to removeEvaluation will be conducted for five values 8f , namely



Run %Miss %f/la %Recall %Prec micro-avg F1 macro-avg F1
CMU gac hierarchy 25 0.02 75 90 0.82 .84
UMass 100T-dups 27 0.06 73 78 0.75 .81
UMass 10T-dups 31 0.05 69 80 0.74 .81

Table 3: Retrospective Detection Results: Duplicates Allowed.

{1, 2, 4, 8, 16. In training, N; will count just the number of e Eventis an index number in the randd, 2, ..., 25
YES tags for the target event and will exclude the BRIEF tags.  which indicates the target event being detected.

However, the full classification of each story in the training , . .

set (i.e., YES, BRIEF, and NO) may be used in training. e N, is the number of stories used to train the system to
the target event.

All of the stories in the test set must be processed, but there . ) ]

will be two evaluations — one over all of the test data (for each ® Storyis the TDT corpus index number in the ranffe

value of V;), and one over a fixed set of test data, namely 2. - -- 15863 which indicates the story being processed.

the test set corresponding {&;) . = 16. (Tabulating e Decisionis either YES or NO, where YES indicates that
performance for a fixed test set &% varies will allow a more the system believes that the story being processed dis-
stable comparison of performance across the various values cusses the target event, and NO indicates not

of N; , because the test set will be the same for all values of

N; ) e Scoreis a real number which indicates how confident
the system is that the story being processed discusses the
target event. More positive values indicate greater con-
fidence. (Large negative numbers indicate lack of confi-
dence, while large positive number indicate high confi-
dence.)

The test stories are to be processed in chronological order,
and decisions must be made “on line”. That is, the detection
decision for each test story must be output before processing
any subsequent stories. Decisions may not be deferred.

The event tracking system may adapt to the test data as it

is processed, but only in an unsupervised mode. Supervisaddirect Evaluation of Segmentation Segmentation (see
feedback is not allowed. (Evaluating over a sef\afs pro-  Section ) will be evaluated indirectly by measuring event
vides essentially equivalent information.) tracking performance on stories as they are defined by auto-
d’patic segmentation means. A straightforward three-step pro-

In calculating performance, those stories tagged as BRIEF f 4
gp 99 cedure will be used:

the target event will not be included in the error tally.

There willbe aTDT traCking trial for each story, and for each 1. Segment the whole corpus using the Segmentation sys-
event, and for each value &f; . This will make a total of tem under test.

about 1,000,000 trials. This number is derived by multiplying .
the number of target events (25) by the average number of 2. Using an event tracker that has been evaluated on the
test stories (assumed to number about 8,000) by the number TDT corpus previously, run this system on the auto-

of values ofV; (5). Of these trials, less than one percent will segmented corpus. Follow the standard event tracking
be type | (true) trials. rules, with the following exceptions:

For each trial, there will be two outputs - first, a logical de- ¢ Train the event tracking system on the original cor-
tection indication, YES or NO, indicating whether the system rectly segmented stories.

believes that the story discusses the target event; and second, o Begin evaluation on the first auto-segmented story
ascore |n_d|cat|ng hqw conﬂdentthe system is in this deC|S|_on. which follows the last training story and which is
This confidence indicator will be used to compute a detection disjoint from it.

error trade-off (DET) between misses and false alarms.
3. Evaluate the event tracker results and compare these re-

sults with results on the original correctly segmented
stories.

The trials for the tracking task will be recorded in a file in
ASCII format, one record per trial, with trials separated by

newline characters and with fields in a record separated by
white space. Each record will have 5 fields in the format

“Event N, Story Decision Score " Wwhere: The evaluation is complicated by the fact that there are no

event flags for the auto-segmented stories. This problem will
be solved by creating scores for the original stories from those



Run %Miss %f/la %Recall %Prec micro-avgF1 macro-avg F1
CMU decay-win2500 59 1.43 41 38 40 .39
CMU fixed-win700 55 1.80 45 35 .39 .39
Dragon 58 3.47 42 21 0.28 .28
UMass 100T 50 1.34 50 45 0.48 45
UMass 50T 51 1.31 49 45 0.47 A7
UMass 10T 59 1.19 41 43 0.42 42
UMass 10T notime 73 1.53 27 28 0.28 .27

Table 4: On-line Detection Results: Average Over 11 Runs.

computed for the auto-segmented stofieThe evaluation training data were also used to derive a threshold for compar-
will then be performed on the original stories using theseison with that query. That query was applied to all subsequent
synthetic scores. The synthetic score for each original storgtories—if they matched the query, they were “tracked.”

will be a weighted sum of the scores for all overlapping auto- . , .
segmented stories, where the weight prorates each score a,%MaSS tried two approaches. The first was based on simple

cording to how many words the overlapping story contributes; relevance feedhack” methads O.f IR. The positive training
examples and up td00N; negative training examples were

> jcoverlap(i) Wij * SCOTCqutoseq(j) handed to a relevance fgedback routine that built queries of 10
to 100 words that were intended to represent the event. The
query was run against the training set to select a threshold.

Scoreopig(iy =

Eonverlap(i) Wij

wherew;; is the number of words in thg" auto-segmented

. i A second approach used a shallow parser to extract nouns and
story that overlap with thé” original story.

noun phrases (rather than all single terms), weighted features
The output record format will be the same as for the convenin two different ways—one that gave features a higher weight
tional event tracking task. The decision will be computed inif they occurred frequently within at least one training story,
the standard way and will be based on the synthetic score. and the other that weighted features based upon the number

of training stories it occurred in.
Speech Tracking — the TWA 800 crash eventIn addition

to the TDT study corpus, an additional corpus will be pro-4
cessed to explore the tracking task for different representa-"

tions of speech, including machine recognition of speechcmuy developed two methods for tracking eventk:Mearest
The corpus consists of CNN recordings and spans the periodejghbor (kNN) classifier and aDecision-Tree Induction
during 1996 when the TWA 800 crash occurred. This corpuggtree) classifier.

contains a total of 1029 stories, of which 35 discuss the TWA

crash. Two different representations of the speech will be prokNN is an instance-based classification method. All training
cessed: (1) Closed captioning taken from the CNN broadcasistances (positive and negative) of each event being tracked
and, (2) Speech recognition output provided by CMU. Thereare stored and efficiently indexed. The approach proceeds by
were no JGI transcripts for the TWA corpus, so there is nogconverting each story into a vector as it arrives and comparing

3. CMU approach

“accurate” representation of the speech. it to all past stories. Thé nearest training vectors (measured
by cosine similarity) to the incoming story each “vote” for
4.2. UMass approach or against the new story, based on whether or not they are

. themselves members of the event. For a binary decision, we
All efforts by UMass to attack this problem have focused ONcot 2 threshold on the scores to vote YES or NQffdveing

Its S|m|Iar|ty.tq information fl!tenng. For th_at reason, UMass an instance of the tracked event. For instance, vote YES iff
used the training data (positive and negative) to create a sho& ore> 0
qguery intended to represent the event being tracked. The '

h - N . . CMU ran some variation on kNN in an effort to find ap-
ere are two possible ways of solving this problem - either by mapping . . . .
the event flags for the original stories onto the auto-segmented stories, (ﬂroaCheS that y|EIded h|gh'quahty results across the entire
by mapping the decisions on the auto-segmented stories onto the origindNiss vs false-alarm tradeoff spectrum, as exhibited in the
stories. Mapping event flags onto the auto-segmented stories might seem DET curves in the evaluation section. The alternate ap-
represent the actual apphcat!c_)n scenario more accgrately._ Mapping s::oru%sroacl,]eS were based upon ustag nearest-neighborhoods
was chosen, however, to facilitate a clearer comparison with results on th . . .

original stories and to avoid conceptual and mechanical difficulties involved(NOt Necessarily of the same size), one for positive instances
in mapping the event flags. of the event and one for negative, computing scéiesand




S~ respectively, using the same similarity-weighted voting a

before. The overall score was a linear combination or a ratig_RUn %Miss  %F/A F1 % Preg
of the two neighborhoods’ scores. CMU kNN 29 0.40 0.66 61
Decision Trees Decision trees (dtrees) are classifiers built| pragon 71 0.12 0.39 60
based on the principle of a sequential greedy algorithm which

at each step strives to maximally reduce system entropy. De-Jymass nonRF-comb 55 0.10 0.60 88
cision trees select the feature with maximal information gain ymass nonRF-20T 13 235 041 27
(IG) as the root node, dividing the training data according to ypmass RF100 39 027 062 62

the values of this feature, and then for each branch findin

the next featurg, such that G(S(f;), fx|f;) is maximized, Table 5: Tracking results faN; = 4, pooled average across

and so on recursively. Decision trees are typically good whenill 15 events evaluated (evaluation/ét = 16). (Note that

there are sufficient training instances belonging to each clasgecall is 1 minus the miss rate.)

One disadvantage of dtrees is that they cannot output contin-

uously varying tradeoff scores and thus are unable to generate

meaningful DET curves (some efforts were made to produce . . . .

DET curves from the dtrees, but they were not highly Suc_smooth!ng. In this case, in order to provide a more accgra?e

cessful). sm_oothlng fqr the event model, we take as the backoff distri-
bution the mixture of the background topic models that best

approximates the unsmoothed event model. There is there-

fore a different backoff model for every event and every value

Dragon’s event tracker is an adaptation of its segmentel‘?f Nt.
which is described in more detail in the segmentation report,

As discussed there, the segmentation algorithm does segme%‘-S' Evaluation methodology

tation and topic assignment simultaneously. In general, thghe first 16 stories on each ev&mire set aside for training
topic labels assigned by the segmenter (which are drawn frofgurposes. A system’s ability to track events is tested on all
the set of automatically derived background topics) are nogiqries from the one immediately following thét" training
useful for classification, as they are few in number and do nog;qry through the end of the TDT corpus. Note that this means
necegsarlly correspond to categone;s a person would find iNhat the test sets for each event are different.

teresting. However, by supplementing the background topic

models with a language model for a specific event of interA system is evaluated based on varying amounts of training
est, and allowing the segmenter to score segments against tiflgta. Each system is allowéd positive training examples,
model, it becomes possible for the the segmenter to output\@here N; takes on values 1, 2, 4, 8, and 16. The system is
notification of an occurrence of that event in the news strearpermitted to train on allV; positive stories as well as all sto-
whenever it assigns that event model's label to a story. In thigies that occur in the corpysior to the N/" story. Note that
implementation, the topic models have the role of determinthe training subset may include some stories that were judged

ing the background against which the event model must scor@RIEF for a particular event; those stories may be used (along
sufficiently well to be identified. with the knowledge that it was judged BRIEF). The test set is

o ) ) ) . always the collection minus th¥; = 16 training data.
In this incarnation, the segmenter is not asked to identify story

boundaries. Its job is merely to score each story against itEvaluations may be averaged across events withimalues.

set of background models, as well as against the event modét,is not particularly meaningful to average acragsvalues.

and report the score difference between the best backgroufesults are reported using the standard TDT evaluation mea-
model and the event model. A threshold is applied to thissures and the Detection Error Tradeoff curves.

difference to determine whether a story is about the event o .
not, and this threshold can be adjusted to tune the tracker .6. Evaluation results

output characteristics. For example, a low threshold meanggsic results Table 5 lists the reported results for several of
that a story does not have to score much better in the eveffie runs from the various sites. These report the exact evalu-
model than it does in the best background model (or, perhapgtion of error rates at the thresholds chosen by the sites, av-
may even fail to score as well by a specified amount) for iTeraged across all events, st = 4 (averaging is by pooling

to be declared an instance of the event. This tuning tends tg)| the results), but evaluated using tNe = 16 test set. The
result in missing very few stories on the event, but probablytaple shows that the sites are able to generate results that vary
will generate a high number of false alarms. widely in their error rates. The preferred run from UMass is

Eve_m models were built from the Words_ in thg training _ SOnly stories that are judged YES count; those judged BRIEF do not
stories, after stopwords were removed with some appropriatéunt as part of the 16, nor as part of the test set.

4.4. Dragon approach




nonRF-comb. Comparing it to the run from the other sites

shows dramatic differences in miss rates. The UMass and Ny value

Dragon runs have similar false alarm rates (the 0.02% differ- 1 2 4 8 16

ence is the difference between 4 and 7 false alarms per event | Dragon -55% -26% - +12% +409

on average). CMU’s substantially lower miss rate comes at | CMU, Dtree | -90% -30% - +12% +159

the expense of a much larger false alarm rate. CMU, kNN | -25% -9% - +11% +32%
UMass -39% 5% - +5% +5%

These results are not particularly surprising. CMU tuned its
decision points on the false alarm/miss tradeoff based upon
the F1 measure that attempts to balance recall and precisidiable 6: Shows changes in pooléd measure for several
values. UMass, on the other hand, tuned its approach usirgystems asV; varies, withN; = 4 as the baseline. Actual
average precision numbers. The effectis clear in the numbereffectiveness numbers fé¥; = 4 are reported in Table 5.
where UMass achieves very high precision for the task, but

CMU attains a better balance between the two.

) curve: here, the leftmost knee at about 0.1% false alarm rate
DET curves Figure 5 shows the DET curves for three sam-; o« the goal.

ple runs, one from each site. To make some comparison

possible, only theV, = 4 run is given for each. A single The DET curves also show the tradeoffs that each site made
point is plotted on the curve to represent the specific detedor selecting a threshold for YES/NO decisions. UMass and
tion error tradeoff made by the threshold values each systefidragon both show decision points in the extreme upper left
chose. The detached point is associated with the CMU decpf the curves, reflecting an emphasis on precision or low false
sion tree approach: this is the result of a confidence threshoarms. CMU, on the other hand, selected points much closer

that does not entirely conform to the YES/NO decisions madéo the middle of the graph, illustrating their goal of balancing
for tracking. recall and precision.

The UMass RF2 run and the Dragon run are very similar invarying Values of N; The results presented above are at
effectiveness. The graph shows oily = 4, but when allV; a single value of\V; (i.e., four). That limited presentation
values are plotted, the UMass run turns out to be the quickesimplifies some points of comparison, but also ignores the in-
approach to converge to “good” values A increases. In teresting question of how the number of training storiEg) (
fact, the use of additional training stories appearfigom  affects performance. Rather than present DET curves for ev-
the overall tradeoff between the errors. UMass hypothesize®'y run discussed in the previous section, we will consider
that the stability is a result of using noun phrases as featuref!st the increase in effectiveness each system achiew¥s as
Dragon’s event models did not work as well with very small changes.

values ofV; Table 6 shows the impact that varyidg has on the effec-

The UMass RF run performs less well, primarily because itiveness of the systems, as measured by pooled valuggs of
uses a small number of features. It is shown to make it clea® measure that balances recall and precision. Only a few
that minor variations in the query formation process can resulef the systems made an effort to optimize fdr values, so

in substantial differences in effectiveness.

The CMU k-NN run is fairly insensitive tav, at low false

alarm rates, but when the miss rate drops below 10%, the

training instances become more and more important. This re- 00% 1
sult is not surprising, because as the size of the neighborhood 40%
needed to match grows (in order to reduce the miss rate), it 20% 8

is very likely that mismatches will occur and the supporting 0% | 124 S
evidence of other training examples will help prevent that. (It 20% | i
is more surprising that UMass’s run does not degrade in this 409 | CMU, kNN | UMass
fashion, than that CMU’s does.) o ragon | CMU,Dtree
-60%

The CMU decision tree approach results in an unusual DET -80%
curve because its decisions result in a very small number of 100% —
confidence scores. When the curve makes huge jumps to the

right, that indicates a large number of stories with the same
confidence value: when the threshold hits that point, all sto-

ries at that value get included and the false alarm rate leap&igure 6: Graph of data in Table 6, showing impact of various
The decision tree approach is tuned to a specific point on thealues ofN; on a pooled®; measure for several systems.




TDT Tracking Runs, Nt=4
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Figure 5: DET curve for sample tracking runs from each site. All runs were performedMyith 4 training stories, and
evaluated atv; = 4.

the actual effectiveness numbers are less important than tlearm rate of 0.04% and above a rate of roughly 15%. It
changes that varyinly; causes. For that reason, only percentshows a modest loss in effectiveness in the 2-15% range.
changes from théV; = 4 value are reported (Table 5 reports Another indirect evaluation done by UMass (not presented
the baseline effectiveness for thi¥t value for those who are here) showed a similar effect, except that the degradation was
concerned). slightly larger and consistent everywhere except in the 10-

. , - . 20% false alarm rate were the two runs were almost identical.
Itis clear from the figure that the decision tree approach is ex- °

tremely sensitive to the amount of training data.Mt= 1,  Those two sets of runs suggest that segmentation of the qual-
it has very poor effectiveness, but it learns rapidly, with onlyity reported in Section has only a modest impact on tracking
modest gains after four training instances. The Dragon apeffectiveness.

proach and the kNN approach both show more consistent

gains with each additional training example, though Dragon'y 8, Speech-Recognized Audio Transcripts

approach appears to continue to benefit from learning the

most. The UMass approach stands out as the most stable affEne tracking methods developed and discussed above worked
N; = 2 training instances: it learns a good event representarelatively well for accurate transcripts and newswire stories:
tion very rapidly and gains almost nothing in effectivenesstranscribed CNN and Reuters, respectively. However, can

beyond that point. tracking also be performed on a much noisier channel, such as
] ] ) the automatically-recognized audio track of broadcast news?
4.7. Indirect Evaluation of Segmentation If so, at what price in accuracy? In order to investigate these

. . . , questions the CMU Informedia group provided TDT with
Figure 7 shows a comparison of a tracking run done with ac bout 1,000 CNN news stories, including their close cap-

tual TDT stories and one with stories generated by a segmeﬁi‘-ons and their speech-recognized audio. Speech recognition
tation run. The runs were both done by Dragon, though aré P 9 - SPee 9

. . : was performed with the SPHINX-II system, which generates
based on an earlier version of their tracker than that presentea out 50% word accuracy for raw broadcast news. The low
in Figure 5, so the baseline performance is slightly lower. . . . ' .
n Figu nep 1S Slightly low accuracy of CSR is due in part to the quality of the news audio
The two runs are nearly identical, except that the segmente@ften there is background interference: music, noise, other

corpus has noticeably degraded performance below a falssmices) and a significant number of out-of-vocabulary words.



Combined DET plots
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Figure 7: DET curves for an early Dragon tracking run using true story boundaries compared to the same run using calculated
segment boundaries.

One event, the crash of TWA flight 800, was heavily repre-4.9. Analysis and Conclusions
sented in this small corpus, and was used for the preliminary

investigation. All the TWA-800 events were hand-labeled byrne tracking task is difficult to analyze because it is some-

Informedia, and made available to the TDT research group§yna¢ vaguely stated. There was no preference specified for
CMU tried both kNN and dtrees on close-captions and Speechinimizing misses or false alarms, so it was difficult for any

data. Dragon (with less preparation time than CMU) alsyt e sites to tune their systems appropriately. (The DET

tried their trackers, producing the following summary results,., e shows a tradeoff for a particular tracking algorithm not
as measured by F1 micro-average actissalues. across algorithms.)

For this task, the events had an average of 54 stories that could

Classifier CC transcript CSR Outp{it have been tracked, and an average of 8377 stories that should
D-tree 0.34 0.20 not have been tracked. Achieving a miss rate of 50% and a
KNN 0.31 0.21 false alarm rate of less than 0.25% would mean 27 correctly
Dragon 0.29 0.08 tracked, and less than 20 incorrectly tracked.

As reported in Table 5, each of these systems falls into ap-

proximately that range, but just barely. At a miss rate of
These results indicate a drop in accuracy from perfect tran50%, the systems achieve about 0.15%, 0.20%, and 0.05%,
scripts to imperfect close captions, and a further drop in acmeaning that on average 12, 16, or 4 uninteresting stories are
curacy to speech recognized audio. However, tracking stiltracked in order to get 27 interesting ones. To that extent,
works under conditions of 50% error rates. This is encouragthen, these systems are successful.
ing as speech recognition accuracy on broadcast news wi
only improve, and tracking technology will also improve.
e e e 1o et exoecedracked) aryhre fom 210 20lsesams il rise (s
liminary, especially given the sm.all data set and single-even?umlng atleast 2 training examples).

tracking. These numbers are not out of line with typical IR ranked re-

||—||owever, for low-miss (high-recall) applications, these re-
ults are less impressive. At a miss rate of 20% (43 of 54



trieval tasks, though the comparison is not necessarily obvi- 5. Conclusions

ous. 50% precision at 80% recall would be quite good for a

search system, and suggests that this problem or this corpus

is simpler than basic IR. This section presents some broad conclusions that can be
What works The tracking task works by creating some drawn from the Topic Detection and Tracl_<ing pilot study. It
form of model of the event being tracked. The above experiyvas not known at the start of the DT p'IOt. ;tudy whether
ments suggest the following: the state of the art could effectively and efficiently address

any of the TDT tasks. The conclusions below show that the
« If the event is modeled by a set of single terms (andtechnologies applied solve large portion; of the problem, but
weights), the evidence indicates that 20-50 terms id€2Vve substantial room—and hope—for improvement.

preferable. Smaller sets of terms provide higher preci-The success of existing approaches has two implications.
sion, but do not cast a wide enough net to bring in muchrirst, because quick efforts yielded good results, continued
relevant material. Very large sets appear to cast too wid@nd more concentrated work on these problems is likely to
and undifferentiated a net, bringing in more relevant sto-yjeld even better results. Second, because the current ap-
ries, but swamping it with unrelated material. proaches are adequate, it is possible to move forward and in-
pestigate the more complicated problems suggested by TDT:

effective at producing high quality results. UMass be-Nandling of degraded text (from automatic speech recogni-
lieves that it is the higher quality features used in itstion). differences between “topics” and "events,” building de-
nonRF-comb20 run that gave it superior performance. scriptions of the events being tracked or detected, and so on.

 Combining multiple approaches to deciding that aStoryGener_aI conc_lusions. The reporting pattern for.a typical
should be tracked can be helpful. The evidence comeévent is a rapid onset followed by a gradual decline over pe-

bination applied by UMass substantially stabilized thefiod ranging from 1 week to 4 weeks. Some events “re-ignite”

algorithm’s handling of very small numbers of training (such as Hall's Helicopter, upon his release and homecom-
stories. ing). A few atypical events are “sagas” with sporadic report-

. ing over long periods (such as OJ's DNA).
e One idea addresses the problem of small event models. i ) o
To smooth an event model consisting of one story, use€gmentation conclusions. Segmentationis a tractable task

that story as a query into a training database, and uséSing known technologies (HMM, IR, machine learning).
the stories retrieved as smoothing material. Given thaf Nis fact was not at all certain when the pilot study began.

Dragon's performance improves rapidly with more train- segmentation is possible by several methods, each of which
ing examples, this might dramatically improve the be-pas strengths and weaknesses. This suggests (a) that future
havior of the system at smaW;. In general, Dragon \york will yield improvements as different ideas are merged,

believes that this task requires a smoothing algorithmyng () different kinds of segmentation problems can be ad-
that aggressively preserves topic, something that is muchressed.

more suited to information retrieval techniques.

e A better set of features (e.g., noun phrases) is even mo

The tracking task shows negligible degradation when ap-
These results are consistent with IR searching results and aptied to segmented text rather than “correct” segmentation,
not particularly surprising for that reason. However, it doessuggesting that automatic segmentation technologies may re-
mean that methods that have helped IR are likely to help irquire little improvementor this task
:;hrllspt:(:llj('jgi(r)éI?\/raixce:an;gcl-:zk?:ctirynmz/pggzﬁrnuti?fﬁ?mggﬁz E?Z?etection conclusions. Pure retrospective detection can be
. ) . erformed quite reliably for most events (except OJ, etc.) by
dressing the problem of tracking with a very small set of pos-

itive stories. For example. the following may be aporo riateclu:stering methods, with significant differences attributable
' p'e, g may ppropriat&, e clustering methods used. Permitting overlapping

areas to explore: (1) evidence combination beyond that lusters improves performance over strict partitions, though

plored briefly by UMass; unsupervised learning; interactive

. . X presents some evaluation concerns.
tracking (supervised learning).

Online detection cannot yet be performed reliably. Whereas

This study has shown that fairly simple techniques €@ e onset of some events are detected well, others (e.g., differ-

achieve very high quality results, but that substantial Workent airline disasters) are confused with earlier similar events

is needed to reduce the errors to manageable numbers. F%lrﬁd thus frequently missed. Further basic research is needed
tunately, that the TDT problem focuses on Broadcast New d y ) '

: i i Yot just tuning or incrementally improving existing methods.
and not on arbitrary forms of information, means that there is ] 9 yimp 9 9

hope that more carefully crafted approaches can improve thimtermediate points of detection, such as on-line with a vari-
tracking results substantially. able deferral period offer interesting intermediate solutions



between retrospective and immediate detection.

Tracking conclusions. Tracking is basically a simpler ver-
sion of the classic Information Retrieval (IR) “filtering” task,
but one shouldhot therefore conclude that it is uninteresting

because it is already “solved”. Rather, the fact that it liesin g

a slightly more restricted domain than IR deals with, means

that some more domain-specific techniques can be applied

(from IR, speech, and machine learning) to possibly give bet-

ter performance than one might expect from unrestricted ap-10-

proaches.
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Tracking of typical events can be accomplished fairly reliably

if at least 4 instance documents are provided. Some events
can be tracked with fairly reliably with only 1 or 2 training 12.

instances.

Different technologies for tracking (kNNs, decision trees,

probabilistic queries, language-model differentials, etc.) 13.
show remarkably similar performance on aggregate, but sub-

stantial differences on specific events.
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Degraded text conclusions. A preliminary study by CMU

and Dragon indicated that tracking with automated speech g

recognition output may prove more difficult than with per-
fect transcriptions, especially with small numbers (under 4)

training instances.

effectiveness? suggesting that this area is ripe for further
research. Note that the TDT2 study will focus centrally on

CSR-generated text for segmentation, detection, and track-
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